Advanced Features of the Fault Tree Solver FTREX

نویسندگان

  • Woo Sik Jung
  • Sang Hoon Han
  • Jaejoo Ha
چکیده

This paper presents advanced features of a fault tree solver FTREX (Fault Tree Reliability Evaluation eXpert). Fault tree analysis is one of the most commonly used methods for the safety analysis of industrial systems especially for the probabilistic safety analysis (PSA) of nuclear power plants. Fault trees are solved by the classical Boolean algebra[1,2], conventional Binary Decision Diagram (BDD) algorithm[3], coherent BDD algorithm[4,5], and Bayesian networks[6,7]. FTREX could optionally solve fault trees by the conventional BDD algorithm or the coherent BDD algorithm and could convert the fault trees into the form of the Bayesian networks. The algorithm based on the classical Boolean algebra solves a fault tree and generates MCSs. The conventional BDD algorithm generates a BDD structure of the top event and calculates the exact top event probability. The BDD structure is a factorized form of the prime implicants. The MCSs of the top event could be extracted by reducing the prime implicants in the BDD structure. The coherent BDD algorithm is developed to overcome the shortcomings of the conventional BDD algorithm such as the huge memory requirements and a long run time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods

Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...

متن کامل

Fault Detection and Classification in Double-Circuit Transmission Line in Presence of TCSC Using Hybrid Intelligent Method

In this paper, an effective method for fault detection and classification in a double-circuit transmission line compensated with TCSC is proposed. The mutual coupling of parallel transmission lines and presence of TCSC affect the frequency content of the input signal of a distance relay and hence fault detection and fault classification face some challenges. One of the most effective methods fo...

متن کامل

Safety Conflict Analysis in Medical Cyber-Physical Systems Using an SMT-Solver

This paper presents a method to include safety system conflicts into a fault tree analysis (FTA) with semantic extensions of fault events. The verification of the incoherent fault tree is done with an SMT-Solver. As an example a networked setup of medical devices for extracorporeal lung assist was analyzed. The method is developed as a basis for improved safety analysis of networked systems.

متن کامل

A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...

متن کامل

Overcoming the uncertainty in a research reactor LOCA in level-1 PSA; Fuzzy based fault-tree/event-tree analysis

Probabilistic safety assessment (PSA) which plays a crucial role in risk evaluation is a quantitative approach intended to demonstrate how a nuclear reactor meets the safety margins as part of the licensing process. Despite PSA merits, some shortcomings associated with the final results exist. Conventional PSA uses crisp values to represent the failure probabilities of basic events. This causes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005